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Abstract

The Carnegie Mellon University Software Engineering Institute (SEI) team was involved in an
Architecture-Centric Virtual Integration Process shadow project for the U.S. Army’s Aviation and
Missile Research, Development, and Engineering Center (AMRDEC) Science & Technology
Joint Multi-Role (JMR) vertical lift program on the Joint Common Architecture (JCA) Demon-
stration. The JCA Demo used the Modular Integrated Survivability (MIS) system. The MIS pro-
ject provided a Situational Awareness Data Manager service that was integrated with Data
Correlation and Fusion Manager (DCFM). This report summarizes the approach taken in the ar-
chitecture-led safety analysis of what will be referred to as the IMR Aircraft Survivability Situa-
tion Awareness (ASSA) system. The ASSA system was the focus of the Phase 2 MIS project, in
which an AMRDEC team developed support services for ASSA and contractors provided a
DCFM component. These components were implemented to conform to the Future Airborne Ca
pability Environment (FACE) Standard specification for portability and integrated on two hard-
ware platforms. By taking an architecture-led approach to safety analysis, the SEI team
demonstrated the use of Architecture Analysis and Design Language and the Error Model V2 An-
nex standard in performing safety analysis of an embedded software system.
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1 Introduction

The Carnegie Mellon University Software Engineering Institute (SEI) was involved in an Archi-
tecture-Centric Virtual Integration Process (ACVIP) shadow project for the U.S. Army’s Aviation
and Missile Research, Development, and Engineering Center (AMRDEC) Science and Technol-
ogy Joint Multi-Role (JMR) program in the Joint Common Architecture (JCA) Demonstration.
The JCA Demo used the Modular Integrated Survivability (M1S) system, which provides data
management and health monitoring services for what we refer to as the Aircraft Survivability Sit-
uational Awareness (ASSA) system. This system was i mplemented through integration by an
AMRDEC team of the MIS system with two instances of a Data Correlation and Fusion Manager
(DCFM) software component. The DCFM was contracted out via a Broad Agency Announcement
(BAA) to two suppliers.

The purpose of the JCA Demo ACVIP shadow project was to demonstrate the value of using
ACVIP technology, in particular the use of architecture models expressed in the SAE Architecture
Analysis and Design Language (AADL) standard in discovering potential system integration
problems early in the development process. The SEI team applied the architecture-led requirement
specification (ALRS) to capture requirements from existing requirement documents in models and
identify potential integration issues early in development through virtual system integration and
analysis. This aspect of the shadow project was discussed in the SEI special report Requirement
and Architecture Specification of the Joint Multi-Role (JMR) Joint Common Architecture (JCA)
Demonstration System [Feiler 2015b]. The potential integration issues were reported in the SEI
special report Potential System Integration Issues in the Joint Multi-Role (JMR) Joint Common
Architecture (JCA) Demonstration System [Feiler 2015a).

Subsequent to the ALRS analysis, the SEI team then applied an architecture-led safety analysis
(ALSA) to the ASSA by using the Error Model V2 (EMV 2) standard to annotate the AADL

model of ASSA with safety-related information. This document summarizes the approach taken in
this safety analysis and describes the safety hazards and hazard contributors that have been identi-
fied, as well as the derived safety requirements for a Health Monitoring System (HMS) for ASSA.

The ASSA exampleillustrates the need for safety analysis of software-reliant systems. Software
has been identified as a major source of hazards [Feiler 2009]. As recently as May 2015, software
has been identified as the culprit—in this case it was found that the quad-redundant Generator
Control Unit of the Boeing 787 could shut down al power during flight if operating for more than
248 hours [Goodin 2015]. These issues are not being identified by current best industry practices,
such as SAE ARP 4761 [ARP 4761]. In many cases aircraft systems with embedded software are
not considered flight critical and as aresult are not assigned Design Assurance Level A. In the
JCA Demo ACVIP shadow case study, the ASSA was assigned Design Assurance Level E. Cur-
rent system safety analysis best practice is highly labor-intensive and as aresult rarely repeated
during the development process.

It has been demonstrated that automation of the system safety analysis practice SAE ARP 4761 is
feasible through modeling and analysis with the SAE AADL and EMV 2 standards [Delange
2014]. It isthistechnology that we use for the ALSA process described in this report.
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2 An Architecture-Led Safety Analysis Process

The objective of the ALSA approach is to systematically identify hazards and hazard contributors
in systems, in particular in embedded software systems, as they have become a major source of
hazards. In this section we describe this process, which is centered on the use of AADL and Error
Model V2 standards and integrated with an ALRS process.

2.1 Context of an Architecture-Led Safety Analysis

ALSA isperformed in the context of a set of stakeholder and system requirement specifications as
well as a socio-technical framework for hazard analysis. The System Engineering Body of
Knowledge (SEBoK)? provides a classification of stakeholder requirements, shown in Figure 1,
and of system requirements, shown in Figure 2. In both cases, the classification ranges from re-
guirements for the system to requirements for development, such as business model and project
constraints, and to requirements for operation, such as operational and logistical requirements,
policy, and regulation. These categories are similar to elements of a general model of sociotech-
nical control, originally developed by Rasmussen [Rasmussen 2000] and adapted by Nancy
Leveson of the Massachusetts Institute of Technology for the Systems-Theoretic Accident Model
and Processes (STAMP) method of accident causality analysis [Leveson 2012].

L See http://www.sebokwiki.org/wiki/
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Type of
Stakeholder

Requirement

Table 2. Example of Stakeholder Requirements Clagsification. (SEBok Original)

Description

Service or Sets of actions to perform the mission or operation of the system-of-interest; enhanced by effectiveness or performance characteristics attached to the mission or operations.
Functional
Operational This category may include:
» Operational concepts that indicate the operational features to be provided without specifying design solutions.
# QOperational scenarios describing the sequence or series of activities supperted by the system-of-interest.
« Operational modes and transitions of modes between states/modes of the system-of-interest during its utilization to include dynamic interactions between the system-
of-interest (viewed as a black box) and the system-of-interest's interface with external components in the context of its use.
Interface Matter, energy, or information flows exchanged between the system-of-interest and its external compoenents in the context of its use, including physical interfaces.

Environmental

External conditions that affect the system when in operation.

Utilization
Characteristics
Human Factors

The '-ilities” used to indicate conditions of the utilization of the system-of-interest (e.g. usability, dependability, security, etc. ).

Capabilties of users and operaters, ergonomics, and associated constraints.

Logistical Acquisition, transportation, and storage of elements needed by the system-of-interest to perform its services (e.g. constraints for logistical support).
Design and Reuse of existing system elements or forbidden materials, for example.
Realization

Constraints

Process These are stakeholder (usually acquirer or user) requirements imposed through the centract or statement of work. These requirements do not directly address the end-item

Constraints system, but rather how the end-item system will be developed and provided. Process requirements include compliance with national, state, or local laws, such as environmental
laws, administrative reguirements, acguirer/supplier relationghip reguirements, and specific work directives. Process reguirements may also be imposed on a program by
corporate pelicy or practice. System or system element implementation process reqguirements, such as mandating a particular design method, are usually captured in project
agreement documentation such as contracts, statements of work (SOW), and quality plans.

Project Constraints to performing the project andior the end-item system within cost and schedule.

Constraints

Business Model
Constraints

Constraints related to the expected business goal achieved by the system-of-interest, when this is relevant within the context of use, which may include: geographic position
(lecal, national, internatienal) of the future product, service, or organization resulting from the system-of-interest, distribution channels, aliance and partnership, finance and
revenue model, ete.

Figure 1: SEBoK Stakeholder Requirement Classification
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Types of System

Requirement

Table 2. Example of System Requirements Classification. (SEBoK Original)

Description

Requirements

Functional Describe gualitatively the system functions or tasks to be performed in operation.
Requirements
Performance Define quantitatively the extent, or how well, and under what conditions a function or tagk is to be performed (e.g. rates, velocities). These are guantitative requirements of

system performance and are verifiable individually. Note that there may be more than one performance requirement associated with a single functien, functional reguirement,
or task.

Requirements

Usability Define the guality of system use (e.g. measurable effectiveness, efficiency, and satisfaction criteria).
Requirements
Interface Define how the system is reguired to interact or to exchange material, energy, or information with external systems (external interface), or how system elements within the

system, including human elements, interact with each other {internal interface). Interface requirements include physical connections (physical interfaces) with external
systems or internal system elements supporting interactions or exchanges.

Operational
Requirements

Define the operational conditions or properties that are required for the system to operate or exist. This type of reguirement includes: human factors, ergonomics, availability,
maintainability, reliakility, and security.

Modes andl/or States
Requirements

Define the various operational modes of the system in use and events conducting to transitions of modes.

Adaptability
Requirements
Physical Constraints

Define potential extension, growth, or scalability during the life of the system.

Define constraints on weight, velume, and dimensgion applicable to the system elements that compose the system.

Design Constraints

Define the limits on the options that are available to a designer of a solution by imposing immovable boundaries and limits (e.g., the system shall incerporate a legacy or
provided system element, or certain data shall be maintained in an online repository).

Environmental

Define the environmental conditions to be encountered by the system in its different operational modes. This should address the natural envirenment (e.g. wind, rain,

Conditions temperature, fauna, salt, dust, radiation, etc.}, induced and/or self-induced environmental effects (e.g. motion, shock, noise, electromagnetism, thermal, etc.), and threats to
societal environment (e.g. legal, poltical, economic, social, business, etc.).

Logistical Define the logistical conditions needed by the continuous utilization of the system. These reguirements include sustainment (provision of facilties, level support, support

Requirements persennel, spare parts, training, technical documentation, etc.), packaging, handling, hipping, transportation.

Policies and
Regulations

Define relevant and applicable organizational policies or regulatory requirements that could affect the operation or performance of the system (e.g. labor policies, reports to
regulatory ageny, health or safety criteria, etc.).

Cost and Schedule
Constraints

Define, for example, the cost of a single exemplar of the system, the expected delivery date of the first exemplar, etc.

Figure 2: SEBoK System Requirement Classification
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2.2 An Integrated ALRS and ALSA Process

ALSA isperformed in the context of the ALRS process, which has been discussed in another SEI
special report [Feiler 2015b]. ALRS draws on the requirements engineering management 2009
handbook [FAA 2009]. The integrated ALRS/ALSA process borrows from several methods as ap-
propriate. SEI Mission Thread Workshops help users identify and prioritize key mission drivers
and use scenarios. SEI Quality Attribute Workshops focus on identifying and refining design and
operational quality attributes into measurable properties about the system. The SEI Architecture
Tradeoff Analysis Method (ATAM) evaluates architecture design against a prioritized set of mis-
sion drivers and use-case scenarios. The system safety analysis best practice (SAE ARP 4754 and
4761) describes Functional Hazard Assessment (FHA), Failure Mode and Effect Analysis
(FMEA), Fault Tree Analysis, and Common Cause Analysis among others as methods to assess
the safety of a system. STAMP isa causal hazard analysis method that focuses on system interac-
tions as much as on failures of system components.

The integrated ALRS/ALSA processis shown in Figure 3. Safety analysis related steps are shown
in green/italics.

System in Operational Context: Stakeholder Perspective

+ System overview

« Critical mission drivers Borrowing from MTW, QAW,

FAA REM handbook, ATAM,
VUV, ARP4761, STAMP

+ Concept of Operation
» Stakeholder goals for system
» Identification of operational safety risks (accident categories)
System Requirement Specification as Contract
* Model-based specification of concepts
* Role and boundary of system
+ System requirement specification and coverage
* Identification of operational hazards (exceptional conditions/unsafe states)

SyStem ArCh IteCtu re Specrﬁ Catlo n REM: Requirement Engineering Management

+ Specification of functional and physical system architecture MTW: Mission Thread Workshop

. D t f . t QAW: Quality Attribute Workshop
ecompOSI on o reqwremen S ATAM: Architecture Tradeoff Analysis Method

» |dentification of error sources as hazard contributors VUV: Virtual Upgrade Validation method

Figure 3: Integrated Architecture-Led Requirement Specification and Safety Analysis Process

The first aspect of this process focuses on capturing the stakeholder requirements. In the context
of safety analysis, thisiswhere operational safety risks are identified. They manifest themselves
as aset of accident categoriesthat are of concern to the stakeholders. In the case of ASSA, we
identify entitiesin the operational environment of the aircraft whose unsafe interaction can lead to
the loss of the aircraft.

The second aspect of this process focuses on specifying a set of system requirements that are veri-
fiable (i.e., they represent a contract to be met). In that context, safety analysis identifies opera-
tional hazards that can lead to accidents of the previously identified accident categories. These
hazards represent exceptional conditions that result in unsafe system behavior. These conditions
may be failures of individual components, or they may be unsafe interactions between operational
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components. In the case of ASSA, we recognize the role of ASSA as a system whose purposeis
to inform the pilot of hazards in the operational environment and the hazards it presents when ex-
hibiting faulty behavior.

The third aspect of this process focuses on identifying contributors to the identified hazards. This
is done on an architecture specification of the system where each of the components is examined

for failure conditions as well as component interactions that result in unsafe states. In the case of

ASSA we identify failuresin the functional and physical system architecture that can lead to haz-
ardous presentation of information about hazards in the operational environment.

Once the contributors to hazards that lead to accidents are identified, the focus changes to strate-
gies for mitigating the identified hazards and hazard contributors. This processis outlined in Fig-
ure4.

Mitigation strategies for managing exceptional conditions (hazards)
« Mitigation by design
— Elimination of avoidable design defects EMV2 Error events can be tagged
— Absence through design alternatives as design or operational error
« Mitigation during operation
— Fault detection, isolation, reporting, and recovery
Design process steps
* |dentify detectable exceptional conditions
— Failure modes and propagation effects
+ |dentify relevant reportable conditions
— Loss of functionality vs. loss of hardware
» |dentify isolation enforcement mechanisms | Use of virtual processor, virtual bus
— Physical and logical separation, partitions and virtual channels
— Multiple Independent Levels of Safety/Security (MILS)

Explicit detection specification in EMV2

Implicit detection by error sink specification

‘ Identlfy recovery tactics Mode-based architecture reconfiguration
— Replication and analytical redundancy

— Incremental rapid restart

EMV2 recover and repair events

Figure 4: Hazard Mitigation Strategies in Designing a Safety System

Hazards may be the result of design defects that can be identified and removed during system de-
sign, or hazards may be unavoidable and, therefore, have to be mitigated during system operation.
A safety system that mitigates hazards typically consists of one or more of the following elements
—referred to as fault detection, isolation, reporting, and recovery:

« Fault detection is the capability of the safety system to monitor and detect faults during sys-
tem operation. It may involve detecting the fault at its source, by monitoring downstream out-
put and inferring upstream faults or by proactively probing the system through mechanisms
such as heartbest.

« Faultisolation isthe capability of limiting the effect of afailure to a subset of the system.
Thisistypically achieved by using fault containment mechanisms, such as address space pro-
tection in software, or sectioning of the power supply to different part of a system.
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« Fault reporting is the capability to inform a system entity, which may be the system operator,
of detected unsafe system behavior.

« Fault recovery isthe capability to continue operation despite a failure through appropriate
system redundancy, reconfiguration, and recovery mechanisms.

In the case of ASSA, we identify requirements for a health monitoring system that informs the pi-
lot of the state of the ASSA.

2.3 Incremental ALRS/ALSA Process in ACVIP

The safety analysis and safety system design process continues incrementally along two dimen-
sions—see Figure 5.

Safety Analysis of Safety System
« |dentification of hazards in safety system
* |dentification of mitigation strategies

Refinement of Architecture Layers
* Repeat safety analysis process
« Consistency checking of assumptions and guarantees across layers

Figure 5: Two Dimensions of Incremental Safety Analysis and Safety System Design

The first dimension focuses on the safety system. It is analyzed for potential hazards, and mitiga-
tion strategies are developed. In the case of ASSA, we discovered that co-location of the health
monitor software with the ASSA software on the same processor results in a common cause fail-
ure of the processor.

The second dimension of incremental safety analysis and safety system design isto iterate for
each layer of the system architecture. From a system engineering perspective thisis aready part
of the SAE ARP 4754A [ARP 4754A] recommended practice for civil aircraft and systems
(Figure 6).

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
Distribution Statement A: Approved for Public Release; Distribution is Unlimited



AIRCRAFT SYSTEM ITEM
REQUIREMENTS REQUIREMENTS REQUIREMENTS ITEM DESIGN VERIgErTION VE;I\;ISJ.:#DN VE:;IRF?gAA%N
IDENTIFICATION

-n-'----

SSf-—e——--

1

'

1

1

:
IDENTIFICATION M- IDENTIFICATION
215823} 217845

414 4624463 55 55 55

Aircraft FHA

Aircraft CCA

Walidation of
requirements at
the next highest

level

&

. %, g\gf&“

Top Down Bogt:’:\"Up
i, Safety Requirements
equirements Verification

Development &

Validation

System FTA :
1
System CMA |+
i
i
1

Validation of
requirements at 1
ihe next highest |
level
1 | Software Design

i
'
! | Hardware Design | !

DO-178B/DO-254 Process

ED-12B/ED-80 Process

Figure 6: SAE ARP 4754A Guidelines for Development of Civil Aircraft and Systems [ARP 4754A]

Figure 7 highlights the safety practices within the ACVIP. The ACVIP consists of three major
steps: define the operational context, develop the requirement specification, and develop the ar-
chitecture specification. The safety process with ACVIP is atop-down approach conducted
throughout the system hierarchy. It begins with the identification of operational safety risks (haz-
ards) as part of defining the operational context for a system.

Define Operational @velop Requirement Specifica&

Context

Finalize

* Model-based specification of concepts Architecture

* System overview A :
y. ) . . * Role and boundary of system SpeC|f|cat|on
« Critical mission drivers . I
c f0 . =»| . System requirement specification and !
* Concept of Operation coverage « Virtual Integration and
* Stakeholder goalsfor |4 Identify Operational Hazards [ Architecture Analysis

system

Identify Operational
Safety Risks

& Hazard Contributors
Identify Safety Requirements

Develop Architecture Specification

» Specification of functional and physical system architecture
« Decomposition of requirements
« Develop Safety Architecture Design

- J

Figure 7: ACVIP ALRS/ALSA Process Steps
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The processisiterative in that it is necessary to go back and make changes or additions to previ-
ous steps. The process is conducted through the various levels of the system and architectural hi-
erarchy starting at the system level and continuing through to the component level of the
architecture. Thisis shown in Figure 8. Thereisinterplay and feedback among the various layers.
First, the hazards, contributors, or requirements at a higher level are detailed in lower levels. Sec-
ond, hazards, contributors, or requirements identified at one level may prompt the reorganization
of ahazard, contributor, or requirement at a higher level. The execution of the process at a lower
level may prompt the identification of a safety risk (hazard) at the top level. In Figure 8, the Iden-
tify Operational Safety Risks step is represented by opaque text at the more detailed hierarchical
and component levels, indicating that the process is not explicitly conducted, since safety consid-
erations relate to the complete system. The exceptional conditions (hazards) and contributors at
lower levels are manifested as saf ety hazards at the system level.

system-level
Identify Identify Identify
Operational Operational Hazard
Safety Risks Hazards Contributors Finalize Safety

Architecture
Design

Create Safety Requirements
Develop Safety Architecture Design

Architecture
Design

Create Safety Requirements
Develop Safety Architecture Design

L

(O]

intermediate-levels G>J

)]

Identify Identify —
Operational Hazard 3
Hazards Contributors Finalize Safety o
[¢]

x

<

O

o

©

—

Lowest-level ; ;
Identify Identify
Operational Hazard o
Hazards Contributors Finalize Safety
Architecture
Design
Create Safety Requirements
Develop Safety Architecture Design

Figure 8: Iterations Through the System Hierarchy

The artifacts created during the process are shown in Figure 9. Hazards and their contributing fac-
tors (contributors) at multiple levels of the system hierarchy are identified. These are used as the
basis for defining safety requirements for the system. These requirements are used to guide the
overall system architecture design and may result in safety-specific architectural elementsthat are
incorporated into the system architecture.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
Distribution Statement A: Approved for Public Release; Distribution is Unlimited



system-level

4 N N\
Identify PN Identify PN Identify —
Operational Operational Hazard o
Safety Risks Hazards Contributors Finalize Safety
Architecture
»

Develop Safety Architecture Design

N 7 Design
L \ Create Safety Requirements

: 1
! | :
1 | ! «
! N / 1 A | .
: 4 : hazard ': system architecture
1 . ]
I hazards ' |_contributors | ! safety architecture
] |
I > | y elements
e ity ] safety =
. Pl " requirements
1 K
N ]
4 N N\
Identify < Identify
Operational Hazard o
Hazards Contributors Finalize Safety legend
Architecture wed
-\ e Design derived from
Create Safety Reguirements i results from
Develop Safety Architecture Design ) | b~ >
more detailed architectural levels control flow

Figure 9: Process Artifacts

2.4 Requirement and Hazard Coverage

We improve the quality of requirement specification by providing a measurable way of ng
requirement coverage. This consists of three parts:

1. Identification of all interaction points with the operational environment in terms of input-
processing-output functionality and in terms of the resources and supervisory control neces-
sary to provide this functionality. Each interaction point is expected to be addressed by re-
guirements.

2. ldentification and quantification of design and operational quality attributes that are key to
achieving the mission. Each of these key quality attributes must be addressed by a require-
ment specification.

3. Identification of exceptional conditions that represent hazards to the safe and secure opera-
tion of the system. A fault ontology provides a checklist of failure conditions that are poten-

tially propagated to other systems and that other systems potentially propagate to the system
of interest.

2.4.1 Coverage of System Interaction and Behavior

We use aframework for specifying a system that has its origin with the French System Engineer-
ing Society (Association Francaise d'Ingénierie Systeme).? This framework, called Constraints,

2 See http://en.wikipedia.org/wiki/Process(engineering)
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Products, Resources, Elements, and Transformation (CPRET), isillustrated in Figure 10. A sys-
tem is defined to transform a set of inputsinto a set of outputs while potentially maintaining state,
utilizing resources, and being under control of a supervisory entity.

Anomalies
Invariants

Implementation constraints

Figure 10: Constraints, Products, Resources, Elements, and Transformation (CPRET)

Each interaction point is expected to be addressed by requirements. The specification of each in-
teraction point is expected to indicate the type of interaction, the type of data or control being ex-
changed with others, the rate at which it is exchanged, and any exceptional conditions that must
be considered. For input, supervisory control, and resource usage interaction points this represents
assumptions being made about the operational environment. For output and supervisory control
feedback this represents guarantees made by the system to others.

2.4.2 Coverage of Relevant Design and Operational Quality Attributes

Next we utilize the concepts of quality attributes and utility trees from the SEI ATAM. These
quality attributes represent two categories of requirements:

1. developmental requirements, such as modifiability, portability, or assurability

2. operationa requirements, with subcategories of mission-, safety-, and security-critical re-
quirements. Mission-critical requirements include function, behavior, and performance.
Safety-critical requirements deal with mitigating hazards. And security-critical requirements
deal with assuring protection of information and trust.

Figure 11 illustrates a partial set of quality attributes—three operational, and one developmental.
Figure 11 aso shows arefinement of the quality attributes into utility functions and their quantifi-
cation into requirements, whose satisfaction can be measured. The annotations of

L (ow)/M (edium)/H(igh) pairsindicate levels of criticality and difficulty to help focus architec-
tural design and evaluation/verification.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
Distribution Statement A: Approved for Public Release; Distribution is Unlimited



(L,M)

Reduce storage latency on
customer DB to < 200 ms.

Data
— Performance Latency
TrERESEtEH ‘m) Delivervideoinreal time.
Throughput suEEEEEEEEEEN,
New products L) Add CORBAmiddleware +'Developmental ‘-_
o in < 20 person-months. » Requirements =
[ Modifiability Change F [ SR e i =
cOTS (H,L) ChangeWeb userinterface . o S
L=/ in < 4 person-weeks. = Modifiability! -
o W (H.H) i _ . R )
Utility Poweroutage atsite1 requires traffic " EEaEEEE
H/W failure redirected to site2 in < 3 seconds. « (Assurability! =
e N e J »
— Availability Network failure detected and recovered . i
CcoTSSW (H,H) in < 1.5 minutes. “vammmmsiimanast
failures (H,M
Creditcard transactions are secure

Data ]
— Security { confidentiality 99.999% ofthe time.

Data Customer DB authorization works
integrity (H,L) 99.999% ofthe time.
o /\_ .

{ Safety-critica[l Mission-critical «
. Requirements Requirements I
Crmn p " G
| 1_Reliability | I i Function J' .
Gresmasema h) e I

* | Safety | . . 1 Behavior 5
[ e - I Y -
I 1 Security | | | Performance !

., emsbsaes T Eeaaeeeses
. .
o omm ' ow - mm r o=m *

Figure 11: Operational Quality Attributes and Utility Trees

This utility tree becomes a checklist for assuring that relevant quality attributes of the system are
being addressed by requirement specifications.

2.4.3 Coverage of Faults and Their Impact

Finally, we use a fault ontology that has been defined as part of the EMV 2 language standard that
is part of the SAE AADL standard suite. Figure 12 illustrates the fault ontology on the left. This
ontology focuses on propagating effects of system failure modes to other systems. The most com-
mon effect is omission (i.e., the failure to provide a service or output). An exampleisfailureto
provide power. Commission is when service or output is provided at atime when it is not ex-
pected. Other examples of the ontology are value errors, timing errors, replication errors, and con-
currency errors. (For more on the fault ontology and its interaction with hazard and operability
(HAZOP) guide words, see Section 3.1.)

Theright side of Figure 12 illustrates the systematic application of these error typesto a system
specification. It shows the interaction between a control system and a system under control. We
annotate this specification with error types to indicate whether certain faults are expected to occur.

STAMP has asimilar model to classify hazardsin control flows [Leveson 2012]. Some faults are
characterized somewhat ambiguously (e.g., inadequate or inappropriate). These descriptions can
be refined into more precise descriptions using the utility tree approach of ATAM, leading to clas-
sifications that tend to align with the EMV 2 fault ontology.
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SourceTracks:out propagation{SensorDataOmission,SensorDataCutcfRangel};

srcl:error source SourceTracks{SensorDataOmission} when Failed;
src2:error source SourceTracks{SensorDataOutofRange} when Degraded;
end propagations;

Figure 12: Fault Ontology and Its Application to a System Specification

Error Sources
Omission/Commission
Early/late
Out of range/incorrect value
Wrong rate/duration
Inconsistent SUC state
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3 Modeling with AADL and the Error Model V2 Standard

To create AADL models, we use elements of the Virtual Upgrade Validation method [de Niz
2012]. The method helps usersidentify the type of system they are dealing with and the appropri-
ate way of representing it in AADL. The method also provides guidance for focusing on common
problem areas in software-reliant systems and ways to represent critical operational quality attrib-
utes. The SEI specia report Requirement and Architecture Specification of the Joint Multi-Role
(IMR) Joint Common Architecture (JCA) Demonstration System provides additional guidance on
how to capture a system in its operational context, stakeholder and system requirements, and the
system architecture in an ACVIP manner [Feiler 2015b].

In this document, we summarize how to use the EMV 2 standard to support ALSA. A full guide on
the use of EMV 2, titled Architecture Fault Modeling and Analysis with the Error Model Annex
V2, will be available as an SEI specid report.3

Weuse EMV2to

« systematically identify exceptional conditions that, when propagated to other systems and
system components, represent hazards. We use

- the EMV2 fault ontology expressed as EMV 2 error types that act as a check list or
HAZOP style guide words
- EMV2 error propagation declarations to specify outgoing propagations that are error
sources
« systematically address how systems respond to incoming propagations. We use

- incoming error propagation declarations to specify that a system expects error propaga
tions from other system components

- error sink and path declarations to specify that incoming propagations are masked (e.g.,
extrapolate a missing value from previous values), passed on to other components (e.g.,
produce no output if input is missing), or transformed to a different error type (e.g., send
no output if the input is out of range or otherwise corrupted)

We proceed by first elaborating on the EMV 2 fault ontology and then describing the EMV 2 con-
structs to specify error propagation behavior across the system.

Finally, as we focus on derived requirements for the ASSA health monitor, we use EMV 2 decla
rations to specify assumptions about a safety system (e.g., who is responsible for detection of fault
occurrences) and the effect of recovery actions by the safety system on the error states represent-
ing working states and failure modes.

8 Feiler, Peter H. et al. Architecture Fault Modeling and Analysis with the Error Model Annex V2. Special Report.

Software Engineering Institute, Carnegie Mellon University. Forthcoming.
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3.1 EMV2 Fault Ontology and Guide Words

ServiceErmor TirningE rror ValseError
f}‘ IV\\
T /f N /
SenviceOmissi iggion E " .
Key Ontology Terms Guide Words i
Omission/Commission Missing sensor reading/command
LateServicaStart Earlyilate LOSS Of pOWer N
[ Out of range/incorrect value :I Early/late command, feedback delay utBounds
EarySenviceTemnination Bou High rate Boundediiem Inaccurate measures
|: Asymmetric replicate value error Command value out of range
Commanded volume too high

Figure 13: EMV2 Fault Ontology and Guide Words

The EMV 2 fault ontology focuses on characterizing error propagation between system compo-
nents (i.e., the effect a fault occurrence in one component can have on other components). Com-
mon error propagation types are shown in Figure 13, while the full ontology is described in
subsections 3.1.1 through 3.1.6. The intent of the ontology is to provide a checklist of error propa-
gation types in abstract terms that can be adapted to specific domains and applications. Itsroleis
similar to guide words in a HAZOP process (example shown in Figure 14).

Other
Parameter / Guide Word More Less None Reverse As well as Part of .
an
. reverse deviatin o deviatin
Flow high flow low flow no flow g | contamination ) d
flow concentration material
. high low
Pressure vacuum delta-p explosion
pressure pressure
Guide Word Meaning
high low
Temperature NO OR NOT Complete negation of the design intent
temperature temperature
. MORE Quantitative increase
Level high level low level no leve,
LESS Quantitative decrease
I tooshort/ | ZS3EN
ime toolong/ [ tooshort/ | 0 | ASWELLAS Qualitative modification/increase
too late too soon ) e e
skipped PART OF Qualitative modification/decrease
Agitation fast mixing | slow mixing | no mixii REVERSE Logical opposite of the design intent
fast OTHER THAN Complete substitution
T T slow no
eactan fagLn Tenetan reactiof EARLY Relative to the clock time
runaway
LATE Relative to the clock time
Start-up / Shut-down too fast too slow BEFORE Relating to order or sequence
AFTER Relating to order or sequence

Figure 14: HAZOP Guide Word Tables

The EMV2 fault ontology is expressed as a set of error types that are then used to characterize er-
ror propagations. The error types are defined by viewing components as providers of services that
consist of a sequence of service items. Error typesfall into the categories of service-related errors,
value-related errors, time related errors, and errors related to redundancy and concurrency. Fur-
thermore, within each category the error types may characterize the service as awhole, the se-
guence of service items, or an individual service item. The EMV2 Annex standard includes a
formal specification of each of the error types. The EMV2 Annex standard also includes a user-
extensible set of aliases for some of the error types that reflect application-specific guide words.
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3.1.1 Service-Related Errors

Service-related errors (ServiceError) represent errors with respect to the number of delivered ser-
vice items. We distinguish between omission errors to represent service items not delivered and
commission errors to represent delivery of service items that were not expected to be delivered.

The error types for individual service items as subtypes of ServiceError are
o ItemOmission (i.e., the omission of asingle service item such as alost message)

o ItemCommission (i.e., provision of an item when not expected such as a spurious message)

The error types for a sequence of service items (SequenceOmission) are
«  SequenceOmission (i.e., anumber of missing service items, such as missed sensor readings)

« BoundedOmissioninterval (i.e., a minimum number of service items between item
omissions such as missed sensor readings)

« TransientServiceOmission (i.e., alimited sequence of item omissions such as a tempo-
rary power outage)

o EarlyServiceTermination (i.e., omission of all service items partway into the service
provision such as a power failure)

o LateServiceStart (i.e., initial service items not provided such as difficulty in starting a

generator to provide power)
« SequenceCommission (i.e., alimited sequence of item commissions with the following sub-
types):

« TransientServiceCommission (i.e., alimited sequence of item extra service items, such
as extra alarm messages)

o LateServiceTermination (i.e., additional service items after the expected termination of
service, such as warning messages about an overheated engine after the engine stops)

o EarlyServiceStart (i.e., extra service items are provided before the expected service
start, such as sensor readings before engine start)

The error types for the service asawhole are
« ServiceOmission (i.e, failure to provide a service when expected such as no power due to
blown transformer)

« ServiceCommission (i.e., provision of service when not expected such as inadvertent charge
on an inactive power line)

These errors have been placed into a type hierarchy shown in Figure 15.
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Figure 15: Service-Related Error Type Hierarchy

3.1.2 Value-Related Errors

Vaue-related errors deal with the value domain of a service. We distinguish between value errors
of individual service items (ItemValueError), value errors that relate to the sequence of service
items (SequenceValueError), and value errors related to the service as awhole (ServiceValuekr -
ror). They form the type set ValueRelatedError.

Each of the three typesisthe root of a separate type hierarchy. This allows us to use them in com-
bination in atype product (e.g., to specify that we have a BoundedValueChange error that may be
OutOfRange).

ItemValueError consists of

« DetectableValueError (i.e., avaue error that is detectable from the value itself, perhaps be-
causeit isout of range or has parity error)

« UndetectableValueError (i.e., avalue error that cannot be recognized based on available in-
formation)

DetectableValueError has the following subtypes
« OutOfRange error (i.e., avalue that is outside a specified range), with two subtypes—Be-
lowRange and AboveRange

« OutOfBounds error (i.e., avalue error that may be within range, but whose value affects a
state in such away that it will be outside specified bounds). For example, in a control system
acommand to move a certain number of steps may be within range of the maximum number
of steps that can be executed in aframe, but may result in a position that is outside the range
of acceptable positions.

SequenceValueError consists of

« BoundedValueChange (i.e., the difference between two consecutive values is greater than a
specified limit). For example, in a control system set-point values may be expected to only
change by up to a specified value.

o StuckValue (i.e., avaue that remains the same for a number of consecutive service items)

o OutOfOrder (i.e., valuesin the sequence that are not in the correct order)
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ServiceValueError consists of

o OutOfCalibration (i.e., avalue error where all values are off by some value). For example, in
acontrol system due to an incorrect calibration value all controller output values are not cor-

rect.

Figure 16 shows the type hierarchies for value-related errors. Note that the top-level error types
are grouped into the type set ValueRelatedError (not shown graphically). Note also that both se-

guence and service value errors imply item value errors.

ltem'alusErar SequencevalusError ServcevalueEmror

Dietectablet'alueError IndetectahlealueErrar fi
Stuckivalu

OutCfCalibration

By
// BoundedvalueChange OutOfOrder
’
s
OutOfBounds OutDfRange
BelowRange AboveRange

Figure 16: Value-Related Error Type Hierarchy

The EMV2 Annex standard includes a predeclared set of aliases for value errors, as shownin Fig-

urel7.

-- Common aliases for value related errors
ValueError renames type ItemValueError; -- legacy

SequenceError renames type SequenceValueError; -- legacy

IncorrectValue renames type ItemValueError;
ValueCorruption renames type ItemValueError;

BadValue renames type ItemValueError;

SubtleValueError renames type UndetectableValueError;
BenignValueError renames type DetectableValueError;
BenignValueCorruption renames type DetectableValueError;

SubtleValueCorruption renames type UndetectableValueError;

Figure 17: Aliases for Value-Related Error Types
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3.1.3 Timing-Related Errors

Timing-related errors deal with the time domain of a service. We distinguish between timing er-
rors of individual service items (ItemTimingError), timing errors that relate to the sequence of ser-
vice items (SequenceTimingError or alias RateError), and timing errors regarding the service as
awhole (ServiceTimingError). They form the type set TimingRelatedError.

Each isthe root of a separate type hierarchy allowing us to characterize them independently (e.g.,
to specify that we have atime shifted service executing at the wrong rate). Item timing errors and
sequence timing errors refer to atimeline with respect to service start time, while service timing
errors use clock time as reference time. Therefore, service timing errors are independent of the
other two, while sequence timing errors imply item timing errors.

[temTimingError consists of

« EarlyDdlivery (i.e., delivery of aservice item before an expected time range, such as a sensor
reading arriving before the previous reading has been sampled for processing)

« LateDelivery (i.e., delivery of aservice item after an expected time range, such as a sensor
reading arriving after the beginning of the next frame)

SequenceTimingError with the alias RateError consists of

« HighRate error (i.e., theinter-arrival time of al service itemsis less than the expected inter-
arrival time). For example, a sender sends periodic messages with a period of 25ms, while the
receiver processes the messages as they arrive and takes an average of 26ms to complete pro-
cessing.

« LowRateerror (i.e., theinter-arrival time of all service itemsis greater than the expected in-
ter-arriva time)

« Ratelitter error (i.e., service items are delivered at arate that varies from the expected rate by
more than an acceptabl e tolerance)

ServiceTimingError with the alias ServiceTimeShift represents errors where a service delivers all
service items time shifted by atime constant. It consists of two subtypes—DelayedService and
EarlyService.

The type hierarchies for timing-related errors are shown in Figure 18. Note that the top-level error
types are grouped into the type set TimingRelatedError (not shown in Figure 18).

temTirmingError SequenceTimingError ServceTimingError

EarlyDeliery LateDelivery HighFate LowRate FateJitar EarlyService DelayedService

Figure 18: Timing-Related Error Type Hierarchy

The EMV2 Annex standard includes a predeclared set of aliases for timing errors, as shown in
Figure 19.
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TimingError renames type ItemTimingError; -- legacy
RateError renames type SequenceTimingError; -- legacy
EarlyData renames type HighRate;

LateData renames type LowRate;

ServiceTimeShift renames type ServiceTimingError;

Figure 19: Aliases for Timing-Related Error Types
3.1.4 Replication-Related Errors

Replication-related errors (ReplicationError) deal with replicates of a service item. Replicate ser-
vice items may be delivered to one recipient (e.g., afault tolerance voter mechanism) or to multi-
ple recipients (e.g., separate processing channels). Replicate service items may be the result of
inconsistent fan-out from a single source, or they may be the result of an independent error occur-
ring to individual replicates (e.g., readings of the same physical entity by multiple sensors or an
error occurrence in one of the replicated processing channels).

ReplicationError consists of
« AsymmetricReplicatesError (i.e., at least one of the replicatesis different from the others)

« SymmetricReplicatesError, where all replicates have the same error (e.g., the error was intro-
duced before the service item was replicated)

We distinguish between the following asymmetric replicates errors:

« AsymmetricValue error with the alias InconsistentValue (i.e., the value of at least one repli-
cated service items differs from the other replicates). In the case of the subtype Asymmetric-
ExactValue error, the values are expected to be exactly the same, while for the subtype
AsymmetricApproximateValue they cannot differ by more than athreshold.

o AsymmetricOmission error with the alias InconsistentOmission with the subtype Asymmet-
ricltemOmission (i.e., at least one of the replicates is missing) (encounters an ItemOmission)
and AsymmetricServiceOmission (i.e., a least one of the replicatesis missing) (encounters a
ServiceOmission)

o AsymmetricTiming error with the aias InconsistentTiming (i.e., at least one of the replicated
service items is delivered outside the expected time interval)

We have the respective set of error subtypes for SymmetricReplicatesError.
Figure 20 illustrates the type hierarchy for replication errors.

ReplicationError

P

AsymmetricReplicatesError B “SymmetricReplicatesError
i
_AsymmetricTiming  AsymmetricValue B AsymmetricOmission
ey 153 ;‘, P

AsymmetricApproximafé\a’alue AssymmétricExactVaIue AsymmetricltemOmission AgymmetricSer\riceOmission

Figure 20: Replication Error Type Hierarchy
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The EMV2 Annex standard includes a predeclared set of aliases for replication errors as shownin
Figure 21.

InconsistentValue renames type AsymmetricValue;

InconsistentTiming renames type AsymmetricTiming;
InconsistentOmission renames type AsymmetricOmission;
InconsistentItemOmission renames type AsymmetricItemOmission;
InconsistentServiceOmission renames type AsymmetricServiceOmission;

AsymmetricTransmissive renames type AsymmetricValue;

Figure 21: Aliases for Replication Error Types

3.1.5 Concurrency-Related Errors

Concurrency-related errors (ConcurrencyError) address issues that occur when concurrently exe-
cuting tasks access shared resources. We distinguish between race conditions (RaceCondition) in
theform of ReadWriteRace and WriteWriteRace, and mutual exclusion errors (MutExError) in
theform of Deadlock and Starvation. Figure 22 shows the type hierarchy.

CaoncurrencyError

7 N

Y
RaceCondition MUtExError
7
3 SN
ReadwWriteRace WriteWriteRace Deadlock Starsation

Figure 22: Concurrency Error Type Hierarchy

3.1.6 Authorization- and Authentication-Related Errors

Authorization-related errors (AuthorizationError) are related to access control. Authorization er-
rors consist of privilege enforcement errors and privilege administration errors. Examples of au-
thorization errors are ambient authority errors, privilege escalation errors, confused deputy errors,
privilege separation errors, privilege bracketing errors, compartmentalization errors, least privi-
lege errors, privilege granting errors, and privilege revocation errors.

Authentication-related errors (AuthenticationError) are related to authentication of services (roles,
agents), of information, and of resources.

3.2 Fault Propagation Across the System

With EMV 2 we can annotate individual system components with outgoing and incoming error
propagations and whether they act as a source, sink, or pass-through of fault occurrences. Com-
bined with the propagation paths already specified in the AADL model in terms of port connec-
tions, access connections, and deployment bindings (shown in Figure 23), we have al the
elements to support the Fault Propagation and Transformation Calculus (FPTC) [Paige 2009].
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This allows atool to perform inductive and deductive fault impact analysis (i.e., identify effects of
fault occurrences and identify contributors to hazards or accidents). In the context of the case
study, we are able to identify hazard contributors of ASSA.

Component A é Component B
; _________________________ >

—
—

Procesfor1 ProcesSor 2

Figure 23: Error Propagation Across the System

The following EMV 2 concepts are used to annotate system components:

error propagation and containment associated with interaction points (ports, data and bus ac-
cess, remote service calls, deployment binding points) to other components to specify the dif-
ferent types of effect, such as bad value or no service, a component failure or incoming
propagation can have on other components, or that a component is expected not to propagate
certain types of effects. Note that outgoing and incoming propagation and containment speci-
fications act as contracts between interacting components (i.e., as guarantees and assumptions
that must be verified).

error typesfor characterizing the different types of errors being propagated (e.g., avalue error
or timing error) or different types of error events (e.g., a component being overheated,
cracked, or stuck)

error sources for identifying components as sources of error propagation (i.e., a component
internal failure resultsin a propagation)

error paths and sinks for specifying how components respond to incoming propagations (i.e.,
whether a particular error propagation is passed on asis to other components, is propagated to
other components as a different error type, or is contained by the component)

propagation paths, determined by the logical and physical connectivity in the architecture, the
deployment of software on hardware, and user-defined propagation paths not recorded in the
AADL core model

probability properties associated with the occurrence of error propagations, sources, paths,
and sinks

Figure 24 illustrates these concepts. Figure 27 shows a textual specification of a position sensor as
an AADL device complete with a specification of its outgoing error propagation acting as an error
source. It aso includes descriptive information about it as a hazard source.
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Figure 24: Error Propagations and Containment Specifications as Contracts

Figure 25 illustrates error types associated with outgoing and incoming ports to indicate error
propagations, shown as rectangles of different colors. The propagation path between components
follows the port connection between the components A and B. Component A is shown to be a
source of error propagations of a specific type caused by a component A failure of a particular
type (shown as colored oval). Component A also passes on incoming errors from itsin port
through its out port.

1 Error propagation (O Error source  Color: Different types of error

_____ » FError flow  ——» Error propagation path b Port

Figure 25: Error Propagation Between Components

3.3 EMV2 Support for Hazard Specification

The Error Model Annex includes a set of properties that are defined in the property set EMV 2.
One such property is Hazards, which has arecord structure to capture all relevant aspects of a
hazard description in the context of an FHA. It allow modelers to provide descriptive hazard in-
formation to the model. Figure 26 shows the elements of this record structure.
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Hazards: list of record
(

CrossReference : aadlstring; gt o
HazardTitle : aadlstring; ~= &l
Description : aadlstring; -- descripti
Failure : aadlstring; -- systen
FailureEffect : aadlstring; -— descl
Phases :
Environment
Mishap :

: aadlstring; -- descri
aadlstring; -- desc
FailureCondition : aadlstring; -- desc:
Risk : aadlstring; o

Severity : EMVZ2::SeverityRange ; -
Likelihood : EMVZ2::LikelihoodLabels; -

Probability: EMVZ2::ProbabilityRange; == pr

TargetSeverity :
TargetLikelihood :
DevelopmentAssurancelevel :

EMVZ2: :SeverityRange; o
EMV2::LikelihoodLabels; -=
EMV2::DALLabels; --

VerificationMethod : aadlstring; -- v
SafetyReport : aadlstring; ==
Comment : aadlstring;

)

Figure 26: Elements of an EMV2 Hazard Description

The modeler examines each component type of interest and determines whether it is a potential

list of aadlstring:; - !-::::-n-. phases

hazard source. They do that by assigning a set of hazard property values to error sources, outgoing

error propagations of components. These assignments can be specific to a particular error type.
Severity and Likelihood values can be assigned as part of the Hazards record, or they can be as-
signed as separate property values. Those values are used if the Severity or Likelihood valuein

the Hazard record is not set.

Figure 27 illustrates an example hazard specification that is associated with a system component

(PositionSensor). The Hazard property is associated with the Failed state of an error source. Such
hazard specifications are characterized with severity and criticality.

device PositionSensor
features
PositionReading: out data port ;
flows
fl: flow source PositionReading {Latency => 2 ms
annex EMv2 {**
use types ErrorLibrary;
use behavior ErrorModellLibrary::Simple;
error propagations
PositionReading: out propagation {ServiceOmission,
flows
efl:error source PositionReading when Failed;
end propagations;
properties
EMV2::hazards =>

([ crossreference => "1.1.1";

3 ms;};

ItemOmission, ValueError};
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failure => "Loss of sensor readings";
phases => ("all");
severity => 1;
likelihood => C;
description => "No position readings due to sensor failure";
comment => "Becomes major hazard, if no redundant sensor";
D

applies to efl.Failed;

**}5

end PositionSensor;

Figure 27: Example Hazard Specification

Tailored versions of the Hazards property are defined in the property set ARP 4761 and
MILSTD882. They use labels consistent with the respective standard. For afull discussion of the

different forms of safety analysis, including FHA modeling with AADL and EMV 2 see Delange
[Delange 2014].

Once dl relevant system components (i.e., their component type declarations) have been anno-
tated with EMV 2 error source or propagation declarations and hazard information, we create an
AADL instance of the ASSA and invoke the FHA tool in OSATE. This produces a tabular func-
tional hazard assessment report [Delange 2014].
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4 Safety Analysis of ASSA

In this section, we apply the ALSA process to the ASSA system—the target of the JCA Demo
ACVIP shadow project. The ASSA is the combined integration of the DCFM software component
with the MIS system. The first step is to understand the requirements from a stakeholder perspec-
tive. Thisis usually done by examining a set of mission scenarios in the context of a Concept of
Operation (CONOP) description.

In our case study of the ACVIP shadow project, we are dealing with an aircraft in an operational
mission context. The focus is not on hazards in the flying aircraft itself, but on hazardous in-flight
conditions as the aircraft interacts with entitiesin its operational environment that can potentially
lead to loss of aircraft. In other words, we are identifying accident categories and focus on those
that address interactions between the aircraft and its environment.

Figure 28 illustrates the aircraft and entities in its operational environment whose interactions can
potentialy lead to an accident in the form of aircraft loss. In our case study the stakeholder re-
guirement document provided insight into the entities to be considered. They are captured in the
AADL model as a set of abstract components and placed into atype hierarchy, similar to repre-
senting them as a Unified Modeling Language (UML) class diagram. In Figure 28, we have only
elaborated the type hierarchy for threats.

Aircraft internal hazards

Accident: aircraft crash due to
Aircraft external hazards

| Aircraft l

-

What are unsafe interactions with
operational environment?

rAdjacent Aircrafti Threats: actively pursuing aircraft destruction
. ,

——————————— Obstacles: power lines, trees

) Terrain: low altitude flight

___________

( Prioritization
Categorles and instances of Severity: loss of aircraft vs. loss of life
operational environment entities Likelihood: more frequent loss due to obstacles
9 than being shot down

Figure 28: Aircraft in Its Operational Environment

As noted in the SEI special report Requirement and Architecture Specification of the Joint Multi-
Role (JIMR) Joint Common Architecture (JCA) Demonstration System, several types of obstacles
are mentioned in the textual stakeholder requirement document—~but their relationship was am-
biguous [Feiler 2015b]. Another interesting observation was that athough obstacles were indi-
cated as leading to a higher loss of aircraft, obstacle tracking was not included in the textual
system requirement specification document.
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A common way of viewing a system in its operational context isvia Monitored and Controlled
Variables. This approach—documented in the FAA Reguirement Engineering Management
Handbook [FAA 2009]—has its roots with Parnas [Parnas 1991]. These variables represent a state
that can be used to characterize unsafe system conditions and interactions. To operationalize this
view we introduce sensors and actuators to represent the monitored and controlled variables. Fig-
ure 29 illustrates this. Note that some systems are under our control, while other systems we can
only observe.

Operational Environment .
________ | mm————— - Environment —
1 ] i I . S—
| System | | System | - k- = .
s /' Monitored ¢ Controlled ™
. Variabl N, Varables /N
I - \\“ _uu |:-.’/ \\“ un_‘.”/ X
. — —i = o

- T System ""' \

L
System . \
4 ) -
rd \‘
- \
. A
___________ I
: Autonomous entities | / System under control \
_____ I _—— -
Sensors Sensors Actuators

[ Systems that can be controlled anq]\& Control System

systems that must be adapted to

Figure 29: From CONOP to a Control System Architecture View

Figure 30 illustrates this control system view for our case study. The pilot acts as the control sys-
tem for the aircraft—utilizing appropriate sensors for input and actuators to issue commands to
the aircraft. The ASSA plays the role of a sensor with respect to entitiesin the operational envi-
ronment that have been identified in the previous phase as potentially leading to accidents. In
other words, the ASSA is an intelligent system that makes the pilot aware of hazardous situations
that affect aircraft survivability.

Pilet as control system
Only the aircraft is under his control.

jisrraln ASSA makes pilot aware of threats,
obstacles, terrain.

Pilot is unaware of malfunction

___________

----------- [ ASSA malfunctions ]

___________

Figure 30: ASSA as Sensor in a Control System
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To identify the hazards ASSA poses to the pilot, we use the EMV 2 fault ontology as a check list.
Figure 31 shows the resulting identified hazards.

Hazards in interaction with pilot due to ASSA malfunction
» Missing (false negative) SA information

» Erroneous (false positive) SA information

* Incorrect SA information (incorrect position)

» Untimely SA information (late arrival: perceived as incorrect time
sensitive data)

» Time-inconsistent SA information (asymmetric position timing error)
Category specific sensing hazards

« Different thresholds for threats, obstacles, terrain

» Failure to sense specific categories

Figure 31: Potential ASSA Hazards

The process involves interaction between a subject matter expert and a safety analyst to identify
the actual hazard in the application domain of situational awareness (SA) systems. It utilizes the
functional architecture model of ASSA as context (shown in Figure 32). This architecture has
been captured as a reference architecture for SA systemsin AADL [Feiler 2015b]. We annotate
this AADL model with fault information through EMV 2 declarations.

[ Collection, Correlation, Fusion, Assessment of observations => Inform and Act ]

)
) ‘--_‘-h_‘—---__
% g«: raft Pos

Threat }}.,| ASSA Max ASSA
SensorAT response
& latency = 1.6
A, seconds
| ] | §y_AssA Data
SensorWW Correlation Track Set o AsfaAt'
Source Track Fusion (DCFM resentation

Situation Track-<et
Assessment

ASSA ¥ Pilot
FI i

: 1.4 ASSA Set
Terrain |- SensordT Data

Sensor Track Correlation

Obstacle |- Farmat
B ASSA

& Annunciation

" Data
SensorLas std Track|Correlation
Format
[CoTTTToossem- v Y
‘Adjacent Aircraft,” -~ e
CIIInniniiiiem T \ Auto
coP ' Weather [ Streams of time-stamped observation track sets ] Rerouting

Figure 32: ASSA System Functional Architecture

First, we consider omission. This may take the form of service omission (i.e., the ASSA failing to
operate), or item omission (i.e., the ASSA failing to inform the pilot of a present threat or obsta-
cle). To the pilot this appears as missing SA information. As aresult of this hazard, the pilot may
not take evasive action to avoid the threat of obstacle.

Second, we consider commission. This takes the form of informing the pilot of threats or obsta-
clesthat do not exist (i.e., presenting the pilot with erroneous SA information). This presents a
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risk in that the pilot may take an action to avoid a non-existent obstacle and unnecessarily expose
the aircraft to enemy fire.

Third, we consider value errors. These take the form of showing an incorrectly calculated position
relative to the own aircraft position and incorrectly determining the threshold for warning and an-
nunciation.

Fourth, we consider timing errors. These take the form of taking longer than expected in perform-
ing the processing and providing the information to the pilot (i.e., the end-to-end latency in thein-
formation flow from the sensors to the pilot display). Since we are dealing with time-sensitive
information, the result is for the pilot to be informed too late and with inaccurate information.

Finally, we consider replication errors. In the case of the ASSA, there is the potential for two in-
formation paths involving own aircraft position, one passing this position information directly
from the embedded global positioning satellite/inertial navigation system (EGI) to the pilot dis-
play and the other feeding the position through the ASSA to compute aircraft-relative position in-
formation of entitiesin the operational environment. The effect is an asymmetric timing error on
the pilot display, which translates into inaccurate information.

Aswe have different categories of threats, obstacles, and terrain, there may be different thresholds
for warning and annunciation. There is also the issue of partial failure of the ASSA (i.e., sensor
failure for certain categories of these entities in the operational environment that the pilot should
be aware of).

We record this information in two steps.

First, we define a set of error types that reflect the types of fault propagation in a domain-specific
set of guide words. We do this by defining an error type library called Exceptional ConditionTypes
with error types as extensions of the predeclared EMV 2 error types (fault ontology), as aliases
(renames) of existing types, or as new error types as shown in Figure 33.

package ExceptionalConditionTypes
public
annex EMV2 {**
error types
ASSALoss: type extends ErrorLibrary::ServiceOmission;
InvalidASSAData: type;
DegradedASSAData : type extends InvalidASSAData;
StaleASSAData : type extends InvalidASSAData;
FalsePositiveASSAData: type;
FalseNegativeASSAData: type extends ErrorLibrary::ItemOmission;
OutOfRangeASSAData renames type ErrorLibrary::0OutOfRange;
UntimelyASSAData: type extends ErrorLibrary::LateDelivery;
TimeSkewedASSADataAircraftPosition: type extends ErrorLibrary::AsymmetricTiming;

InaccurateASSAData: type set {OutOfRangeASSAData, TimeSkewedASSADataAircraftPosi-
tion};

ASSAFaults: type set {FalsePositiveASSAData,FalseNegativeASSAData, Inaccurate-
ASSAData };

-- consequent accident

AircraftLoss: type extends ErrorLibrary::ServiceOmission;
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--Track error types
--sequence errors
ObservationsOutofOrder: type extends ErrorLibrary::0utOfOrder;
ObservationMissing: type extends ErrorLibrary::ItemOmission;
--Geographic error types
--Inaccurate and imprecise
ObservationsImprecise: type extends ErrorLibrary::ValueError;
ObservationsInaccurate: type extends ErrorLibrary::ValueError;
--Position errors
AirspeedvValueError: type extends ErrorLibrary::ValueError;
AltitudeValueError: type extends ErrorLibrary::ValueError;
LongitudeValueError: type extends ErrorLibrary::ValueError;
LatitudeValueError: type extends ErrorLibrary::ValueError;
-- track set related errors
TrackSetIntegrity renames type ErrorLibrary::ValueError;
TrackOmission renames type ErrorLibrary::ItemOmission;
TrackValueError : type extends ErrorLibrary::ValueError;
TrackComputationError : type extends ErrorLibrary::ValueError;
end types;
**}i

end ExceptionalConditionTypes;

Figure 33: ASSA-Specific Error Types

Second, we use the guide words to perform the safety analysis. We annotate the interaction points
(ports, feature groups, etc.) of ASSA with error propagation declarations that reference the error
types we just defined. Figure 34 shows the outgoing propagations to the pilot. It also shows that
we do not expect the OwnAircraftPosition to be out of range. Finaly, it shows that missing own
aircraft position information is mapped into FalseNegativeASSAData to indicate that an entity
may falsely be considered absent.

annex emv2 {**
use types ErrorlLibrary, ExceptionalConditionTypes;
error propagations
SSSAirCrewPresentation: out propagation {FalsePositiveASSAData, FalseNegativeASSAData};
S55AirCrewPresentation.AircrewTerrainLocationAwareness: out propagation
{FalsePositiveASSAData, FalseNegativeASSAData};
OwnAircraftPosition: not in propagation {OutofRange};
OwnAircraftPosition: in propagation {ItemOmission};
flows
passthrough: error path OwnAircraftPosition{ItemOmission}
-> SS5SAirCrewPresentation{FalseNegativeASSAData};
end propagations;
properties
EMV2::Severity =» 2 applies to SSSAirCrewPresentation.AircrewTerrainlocationAwareness;
s
end ASSASystem;

Figure 34: EMV2 Annotation of the ASSA System Interface

Once we have elaborated the functional and physical architecture of ASSA (see also Feiler
2015b), we examine each ASSA component from a safety analysis perspective, identifying poten-
tial hazard contributors. The steps are outlined in Figure 35.

CMU/SEI-2015-SR-032 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30
Distribution Statement A: Approved for Public Release; Distribution is Unlimited



For each ASSA component

« |dentify outgoing error propagations as error sources
— The component itself is the hazard contributor
* |dentify outgoing error containments
— Promises/guarantees of not propagating certain errors
« |dentify incoming error propagations and paths
— Assumptions about masking (sink), pass through/conversion to different type (path)
— Incoming through ports as well as deployment/resource bindings
* |dentify incoming error containment as assumption
Fault impact analysis
* Mismatched propagation assumptions (unhandled faults)
* Failure modes and effects analysis

Figure 35: Identifying Hazard Contributors

In the first step, we identify potential hazard sources for each of the components that interact with
the ASSA. In our example, we annotate the EGI unit that provides aircraft position information.
We then instantiate an AADL modé that includes an instance of ASSA, EGI, and the pilot and
invoke the FHA tool in OSATE. Thisresultsin an FHA report asillustrated in Figure 36.

Error Hazard Description Crossrefer: Functional Operation: Severity Likelihood
egil "ltermOmission on airCraftPosition” "Lack of providing aircr: "N/A" "Lack of Ai "all" 3c

assa "FalsePositiveASSAData on SSSAirCrewPresentation”  “Reporting of non-exist "N/A" "Non-Exist "all"

assa "FalseNegativeASSAData on SSSAirCrewPresentation” "Failed reporting of thr "N/A" "Failed Rej "all"

assa "FalsePositiveASSAData on 555AirCrewPresentation”  "Inaccurate and untime "N/A" "Inaccurat "all” 2

assa "FalseNegativeASSAData on 555AirCrewPresentation” “Inaccurate and untime "N/A" "Inaccurat "all" 2

assa "InaccurateASSAData on 5SSAirCrewPresentation” "Inaccurate and untime "N/A" "Inaccurat: "all" 2

Figure 36: A Sample FHA Report

Note that some of these hazard contributors are design defects that can be eliminated during de-
sign. In EMV 2 we have the ability to tag different error sources as to whether they are to be con-
sidered design errors that can be eliminated by design revisions or operational exceptional

conditions that impose requirements on a safety system. Figure 37 shows some candidates for
elimination by design.

Data exchange inconsistency
» Measurement units, base type representation, standard domain representation
Functional integration consistency checking of data model
* Elimination
Matching data interchange assumptions and guarantees
Time inconsistent aircraft position related data
= Multiple paths with different latencies

Identification through analysis
Impact of partition design decisions
= Elimination

EMV2 containment declaration

Elimination Indicated by error
by

Redesign to achieve same path latencies
Accommodate for discrepancy in data correlation projections
Incorrect assessment thresholds
» Operational scenario simulation and human factor study
Category specific thresholds

Figure 37: Error Mitigation by Design

In a second step, we revisit each component type to identify any incoming error propagations
from other components and how they are addressed (i.e., whether they are masked [error sink] or
passed through to other component [error path to an outgoing error propagation]).
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Once we have specified all outgoing and incoming error propagations, the EMV 2 consistency
analysis identifies mismatched assumptions about error propagation along each of the connections
between components. For example, the consistency analysis identifies unhandled faults where an
outgoing propagation from one system component is not expected as incoming error propagation
by areceiving system component. Figure 38 shows such an unhandled fault identification by
ASSA when itsincoming error propagation does not include value errors.

system implementation AircraftSystem.basic
subcomponents
pilot: system Aircrew;
egil: device EGI;
assa: system ASSASystem::ASSASystem;
connections
aircraftpos: port egil.airCraftPosition -> assa.OwnfircraftPosition;
showinfo: feature group assa.SSS5AirCrewPresentation -> pilot.SAInformation
flows v
< >

Problems © = Properties ® AADL Property Values + Search © Error Log
error, 2 warnings, 0 others

*

eValueError,LatitudeValueError} has error types not handled by incoming propagation OwnAircraftPosition{ltemOmission}
Figure 38: Unhandled Fault Identification

Similarly, afault impact analysis uses the same to trace the impact of error sources through the
system by following a propagation path identified by connections and error flows. In our example,
it traces hazard contributors to the ASSA hazards and to resulting incidents. Figure 39 shows a
fault impact analysis report for ASSA in its operational context that includes the EGI before the
ASSA model has been expanded into its subsystems. The report shows the component and the ini-
tia failure mode. The error type shown is that of the error source declaration. If the error typeis
not present in the error source, the error type of the outgoing error propagation is shown. The
first-level effect column shows the outgoing effect, identifying the outgoing error propagation
type and the destination. The entry then repeats the failure mode of the affected component and its
propagation as a next-level effect. This generic fault impact report can be adapted to specific
FMEA formats.

Fault Impadt of System Internal Error Sources

Componen! Initial Failure Mode 1st Level Effect Failure Mode second Level Effect

egil {ltemOmission} {ItemOmission} airCraftPosition -> assa:OwnAircraftPositior assa {ItemOmission} {FalseNegativeASSAData} SSSAirCrewPresentati
egil {AirspeedValueError} {AirspeedValueError} airCraftPosition -> assa:OwnAircraftPc assa {AirspeedValueError] {InaccurateASSAData} SSSAirCrewPresentation -
egil {AlitudeValueError} {AltitudeValueError} airCraftPosition -> assa:OwnAircraftPo assa {AltitudeValueError}  {InaccurateASSAData} SSSAirCrewPresentation -
egil {LengitudeValueError} {LongitudeValueError} airCraftPosition -> assa:OwnAircraftf assa {LongitudeValueError} {InaccurateASSAData} SS5AirCrewPresentation -
egil {LatitudeValueError} {LatitudeValueError} airCraftPosition -> assa:OwnAircraftPo assa {LatitudeValueError} {InaccurateASSAData} SSSAirCrewPresentation -
assa {Inaccu AData} {Inacci ASSAData} 555AirCrewPresentation -> [No Outgoing Conn]

assa {Sensorloss} {FalsePositiveASSAData) S55AirCrewPresentation -> [No Outgoing Conn]

assa {Fal: gativeASSAData) {Fal: gati SAData} S5SAirCrewPresentation -> [No Outgoing Conn]

Figure 39: Fault Impact Analysis Report for ASSA

Once we have elaborated the functional and system architecture of ASSA (see aso the SEI special
report CMU/SEI-2015-SR-030 [Feiler 2015b]), we examine each ASSA component from a saf ety
analysis perspective, identifying potential hazard contributors. They are recorded as EMV 2 anno-
tations for each of the ASSA. Figure 40 shows a sampling of potential hazard contributors by the
functional architecture of ASSA. When rerunning the FHA tool these potential hazards will be in-
cluded in the report.
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Functional Architecture

AN
Missing readings,
inaccurate reading
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SensorAT
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Figure 40: Sampling of Functional Architecture Hazard Contributors

Separate from the functional architecture, we examine the hardware platform system architecture
of ASSA for hazard contributors. It consists of the sensors, processor, display, and network com-
ponents. All of them are dependent on external power supply. This architecture and its hazard
contributors are shown in Figure 41. In the example, we have focused on component failures
which manifest themselves as service omission error propagations. In the case of the general pro-
cessing unit (GPU), data corruption in memory is being considered. In the case of the network la-
belled Ethernet, we consider dropped packets (i.e., item omission).

ASSA ASSA
ensorA
MFD
B:fm\ failure
o~ Ethernet MFD !
== A‘ 2, ILSTD‘ISSH cPu H ‘ - . ,—||—|P"m
Obstacle | - k| Network - - - = o J
e T | fail | l GPU failure | Dro;;.l(p:d Augitory/lamps}}
) Failure ! el packets ——
Terrain I ASSA o ; o Data K K
ensorlLa A . P S /!
[romee=ecsans ALY a'r - ’ ;
' = LAY 7 i’ ’
‘Adjacent Aircraft, RRRENRTANY ;L S S
P, , | Loss of power | - ©
L} 1 r ———————
s C_ ?'3__ _ I Power supply_:[ Number of external power sources ]
FEEEEERS L e \ - ——
| Weather !

Figure 41: Hazard Contributions by Physical Architecture

Again, once the AADL model of the hardware platform is annotated with incoming error propaga
tions and error paths, we perform afault impact analysis to get areport of how failure of a hard-
ware platform component affects other hardware platform components.
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Finally, we define an ASSA system configuration that includes the hardware platform and add a
binding specification of the functional architecture to elements of the hardware platform using
AADL binding properties. We also revise the EMV 2 annotations of functional architecture com-
ponents being bound to the platform and platform components to identify potential propagations
of error types between the functional architecture and platform due to the binding. After we reran
the fault impact analysis, the report now includes the effects of failuresin the platform propagat-
ing to the ASSA system.
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5 ASSA Health Monitoring System Requirements

Once the ASSA hazards have been identified, we can define a set of derived requirements for a
Health Monitoring System for the ASSA. The original textual system requirement document in-
cluded requirements for a health monitor. Its requirement statements focused primarily on as-
sessing the health of the sensors at startup time. They stated that as long as one sensor was
operational the system is to enter operational mode. The requirement document did not cover
monitoring during operation and the kind of health information to report to the pilot (e.g., which
subset of sensorsis operational).

In the context of the ALSA process, we can use the results of the safety analysis to determine
which ASSA components are to be monitored during operation (i.e., whose conditions have not
been eliminated during design and can actually be detected). Figure 42 shows that in our example
the health monitor should track whether there are missing sensor readings and whether the maxi-
mum data volume is exceeded (i.e., available storage is exhausted).

Functional Architecture

ASSA Health Monitor

.

J Missing readings, m ASSA

inaccurate readlng Tiine difference in Aircraft ]

‘ [ AssA position related data
—7 3 SensorAT ura =tr info
ile fire orrel. tr \ por
w‘ y ASSA Dam — response
SensorWw| Colrelatidn c;_‘:::("g: Incorrect latency > 1.6
SouseC Trdek sion \ thresholds ; -, Frnonids
Situation

;| Pilot
-

Lower effective
refresh rate

ta " Assessment
rrelatiol

ASSA ot

~T"| sensordT ¥,
~lsensort

Gl SensorLas| ——-

p )
‘Adjacent Aircraft, Sensor Track
———————————— g Format

\ f
Max data volume
I{’ [ Trackset integrity ] I e
N I SA Data SEI"VIéE_I_

R Wrong units, signed-
unsigned, little/big endian

_____________

Figure 42: Identification of Functional Components to Be Monitored

Figure 43 illustrates the physical components to be monitored for failure (omission) and, in the
case of the Ethernet network, also for dropped packets and data corruption.
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Figure 43: Identification of Physical Components to Be Monitored

Finally, we apply the safety analysis process to the Health Monitoring Systemitself. Thisisillus-
trated in Figure 44. The health monitor is a piece of software that must execute on a processor. If
it is bound to the same processor as the ASSA functions it is responsible for monitoring, then a
processor failure cannot be detected and reported by the health monitor. Thisis determined by a
fault impact analysis whose impact trace shows that a GPU failure propagates to both the ASSA

functions and the health monitor functions.

o 4 ASSA health
= e Menion monitor failure

A \

[ Binding to physical component being monitored ]

Network

o | &y
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lObstal:Ie | | SWORR | | GPU failure |,
_1 Sensor ; ”
) Failure K i
| Terrain [~ ASSA W ! 0
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____________ ’ 1 Power supply :[ Number of external power sources ]
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Figure 44: Safety Analysis of Health Monitoring System
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6 Summary and Conclusion

The purpose of the JCA Demo ACVIP shadow project was to demonstrate the value of using
ACVIP technology, in particular the use of architecture models expressed in the SAE AADL
standard, in discovering potential system integration problems early in the development process.
The SEI team demonstrated two ACVIP processesin this project, one for Architecture-Led Re-
guirements Specification (ALRS) and another for the Architecture-Led Safety Analysis (ALSA).

The SEI special report Requirement and Architecture Specification of the Joint Multi-Role (JMR)
Joint Common Architecture (JCA) Demonstration System summarizes the ALRS process that was
used to capture requirements from existing requirement documentsin an AADL model annotated
with requirement specification declarations [Feiler 2015b]. In that process, we analyzed the result-
ant AADL model for potential system integration issues, which we reported in SEI special report
Potential System Integration Issues in the Joint Multi-Role (JMR) Joint Common Architecture
(JCA) Demonstration System [Feiler 20153a)].

In this report, we described an ALSA process that leverages and integrates with the ALRS pro-
cess. We used the EMV 2 standard to annotate the AADL with fault information. This allowed us
to automate various safety-related analyses outlined in SAE ARP 4761. The fault propagation on-
tology of EMV 2 allowed us to derive domain-specific guide words to identify the hazards of an
ASSA system and various hazard contributors. We identified several types of hazards:. false nega-
tive, false positive, incorrect, untimely, and time-inconsistent SA information. We showed how
such safety analysis can be repeated for several layers of a system architecture by performing it on
ASSA inits operational context and then repeating it for the ASSA subcomponents.

Automation of safety analysis allows us to make architectural changes or enrich the fault annota-
tions and repeat the safety analysis at little incremental cost. This makes safety analysis of subsys-
tems affordable.

We have showed how safety analysis can be applied to functional and system architectures sepa-
rately and then repeated after the functional architecture is mapped to the system architecture. As
the ASSA islargely a software-based system, we showed that this architecture-led safety analysis
allows usto consider software faults as a major hazard contributor and understand the impact of
such fault occurrences.

We illustrated functional hazard assessment and fault impact analysis. The same models can be
the basis for common cause analysis, fault tree analysis, and, after annotation with fault occur-
rence, distributions for probabilistic safety analyses. We then used the safety analysis results to
identify those hazard contributors that can be eliminated by design and a set of requirements for a
health monitoring system for ASSA, whose responsibility is to inform the pilot of ASSA malfunc-
tions. In that context, we identified that the scope of responsibility for the health monitor was not
well defined in the original requirement document. Finally, we subjected the health monitoring
system itself to ahazard analysis and identified a potential common cause hazard if the ASSA
functional software and health monitoring software are allocated to the same processor.
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Appendix Acronym List

AADL Architecture Analysis & Design Language
ACVIP Architecture-Centric Virtual Integration Process
ALRS architecture-led requirement specification
ALSA architecture-led safety analysis

AMRDEC | Aviation and Missile Research, Development, and Engineering Center
ASSA Aircraft Survivability Situation Awareness
ATAM Architecture Tradeoff Analysis Method
BAA Broad Agency Announcement

CPRET Constraints, Products, Resources, Elements, and Transformation
CRC cyclic-redundancy check

DCFM Data Correlation and Fusion Manager

EGI embedded GPS/INS

EMV2 Error Model Annex V2

FHA Functional Hazard Assessment

FMEA Failure Mode and Effect Analysis

HAZOP hazard and operability

HMS Health Monitoring System

INS Inertial Navigation System

JCA Joint Common Architecture

JMR Joint Multi-Role

MIS Modular Integrated Survivability

NACK negative acknowledgment

NM nautical miles

OSATE Open Source AADL Tool Environment

SA situational awareness

SADS situational awareness data service
SEBoK Software Engineering Body of Knowledge
SEI Software Engineering Institute

SSS System Segment Specification

STAMP System Theoretic Accident Model Process
STPA System Theoretic Process Analysis

UML Unified Modeling Language
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